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Abstraet--A new second-moment closure model for turbulent scalar transport is proposed on the basis of 
the correlation coefficients between the flow variables and their derivatives that appear in the scalar- 
pressure gradient and dissipation terms of a turbulent scalar flux. Since these correlation coefficients should 
respond sensitively to a change in any of the time scales characteristic of turbulent transport, the model is 
given as a function of their ratios, which can be written in terms of turbulent Reynolds number, 
(Ret  = k2/ve), Prandtl number (Pr = v/ot) and time scale ratio (R = (ko/eo)/(k/e)). The conventional mode- 
ling methodology, i.e. the high Reynolds number hypothesis is abandoned, although the proposed model 
asymptotes to the well-established model expression in high Reynolds/Peclet number flows. As a result, 
the scalar fluxes are predicted very well in the homogeneous as well as wall-shear flows over a wide Prandtl 

number range. Copyright © 1996 Elsevier Science Ltd 

1. INTRODUCTION 

A mathematical model of turbulent scalar transport 
is required for solving the Reynolds-averaged scalar 
equation. With the recent advances in computers, the 
popularity of second-moment closure, at least in the 
research community, has considerably increased, 
though the turbulent Prandtl number models are still 
in wide use in engineering applications. In the second- 
moment closure, the generation terms due to mean 
velocity and scalar gradients can be handled exactly, 
and this feature should be one of the most attractive 
advantages when predicting complex flows. In recent 
years, various mathematical and/or physical con- 
straints such as rapid distortion theory [1], real- 
izability [2] and frame indifference [3] have been taken 
into account in modeling each of the generating and 
destruction processes in order to obtain a model of 
wide applicability ; this can only be done for the model 
of this level. Current efforts are directed toward 
developing new models, especially of the pressure-- 
scalar gradient correlation term to improve the overall 
accuracy of existing models [4, 5]. Although the 
developed models demonstrated improvements in thin 
shear flows, they sometimes gave poor predictions 
compared to those obtained by the previous models 
in more general cases [6, 7]. Besides, an introduction 
of such additional constraints as those mentioned 
above has resulted in very complex model structures, 
which may not be desirable for engineering calcu- 
lations. There has been even an attempt to inten- 
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tionally abandon some of the constraints in order to 
possess a simpler and well-balanced model expression 
[8]. 

In scalar flux modeling, the major weakness lies 
in the fact that most of the scalar field models are 
developed in the same modeling procedure as the vel- 
ocity field models. Therefore, they are basically appli- 
cable only for gaseous flows at Pr ~ 1 and their physi- 
cal basis is questionable when the Prandtl number is 
far from unity. For predicting various Prandtl number 
fluid flows, several turbulent Prandtl number models 
[9-11] and scalar field two-equation models [12] can 
be found in the literature, but only a few second- 
moment closures have been proposed so far [13, 14]. 
A difficulty exists in the choice of the relevant time 
scales that are indispensable to modeling unknown 
correlations between velocity and scalar fluctuations. 
For instance, even for a simple scalar field, it is not 
physically clear which time scale, k/e or ko/~o, should 
be adopted, and the selection will be even more 
ambiguous in low Peclet number flows with additional 
time scales such as x/(ct/e). It is impossible, however, 
to incorporate these effects into the model only from 
a dimensional argument. Hence, a new approach must 
be introduced. Furthermore, it is known that the sca- 
lar-pressure gradient correlation term is not generally 
aligned with either the scalar flux vector or the mean 
scalar gradient vector ; one can expect a serious diffi- 
culty in deriving a simple relationship among these 
vectors. This is actually the case in strongly sheared 
turbulence, where the ratio of the streamwise to cross- 
stream scalar flux components is considerably large 
(-ulO/u20 > 2), whereas that of the scalar-pressure 
gradient correlation term remains moderate [5, 15]. 

From the viewpoints above, we presently construct 
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NOMENCLATURE 

a~ stress anisotropy, u~u;/k- 2/'36,, U,. u, 
A flatness parameter, 1 - 9 / 8 ( A 2 -  A3) 
A2 second invariant of stress anisotropy, V~o 

a,)a0 
A~ third invariant of stress anisotropy, x~ 

a(/ajka,i 
f:t,./;.2 functions in c., model, equation (12) 
.fm,.lm functions in F b  model, equation (11) 
.)c weighting function in the near-wall 

region, equations (50), (51) and (52) 
k turbulent kinetic energy, u,u,/2 
ko scalar variance 02/2 
Nu Nusselt number 19, 0 
P production of turbulent kinetic energy 2 
Pr Prandtl number, v/c~ 2o 
Prt turbulent Prandtl number v 
P~o, Po production terms of turbulent scalar II,~ 

flux and scalar variance, in 
equations (1) and (37) p 

R time scale ratio, (ko/~o)/(k/e) e)~o 
Re, turbulent Reynolds number, k'-/v~: 
S mean velocity gradient, ~tJr/(?x: 
t time 
T~o, To, T,:o turbulent diffusion terms of 

turbulent scalar flux, scalar variance 
and its dissipation rate, in equations 
(1), (37) and (39) 

mean and fluctuating velocity 
components 
molecular diffusion term of turbulent 
scalar flux, in equation (1) 
ith coordinate. 

Greek symbols 
thermal diffusivity 

~:, e0 dissipation terms of k and ko 
~:,,, dissipation term of turbulent scalar 

flux, in equation (1) 
mean and fluctuating scalar 
Taylor microscale, x/(10vk/e) 
scalar Taylor microscale, x/(12eko/eo) 
kinematic viscosity 
scalar-pressure gradient correlation 
term, in equation (1) 
density 
pressure-scalar gradient correlation 
term. in equation (2). 

Subscripts and superscripts 
(), i partial derivative with respect to x~ 
( ) ensemble average 
( )' root-mean-square value. 

a second-moment closure that can be applied to flows 
of a wide Reynolds and Prandtl number range. In 
other words, the dependence of the model on the 
turbulent Reynolds number Re,, the molecular 
Prandtl number Pr and the time scale ratio R is prop- 
erly accounted for. This cannot be done from a dimen- 
sional analysis alone, and in the present study, we 
pay special attention to the correlation coefficients 
between unknown variables, since they are greatly 
affected by the parameters mentioned above [16]. 

The following section describes the derivation of a 
second closure for handling multiple time scale prob- 
lem of turbulence. Then, the model is tested and evalu- 
ated in several homogeneous flows and in fully- 
developed channel flows at various Prandtl and Rey- 
nolds numbers. 

2, MODEL DEVELOPMENT 

2.1. Modeling Rio and eio 
When any buoyancy effect can be neglected, the 

transport equation for the scalar flux in a fluid of 
constant physical properties is given as : 

DuiO - -  ~0  - - O U i  l . Op 

P,o ll ,a 

c~O au~ a - -  
- (ct + v) ?x~ Ox, Ox, u~ukO 
- - v  

qo 7-,o 

+ 

v _ _  

The scalar-pressure gradient correlation term lqi0 and 
the dissipation term M are major sink terms and need 
to be carefully modeled. In conventional turbulence 
modeling, Flio has been divided into the pressure-sca- 
lar gradient correlation term ~i0 and the pressure 
diffusion term; the latter has been usually ignored 
or thought of as being absorbed into the turbulent 
diffusion term : 

! o i l 
8x, p O& 

H~, Cm pressure dif£ 
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The dissipation term has been assumed to be isotropic 
(ei0 = 0) and the effect of anisotropic dissipation has 
been expressed implicity within the model of ~bi0. This 
reduces the problem to the modeling of ~bg0 alone, and 
one of the simplest model for ~,bg0 is written as [17] 
(Basic model, hereafter) : 

- -  - - a G  
d?,o = - 3.0~u,O+O.SukO~x k . (3) 

However, there are some situations where this 
approach seems inappropriate, e.g. in low Peclet num- 
ber flows ~go dominates the flux destruction mech- 
anism. Since rig0 and ego represent physically distinct 
mechanisms, they are modeled separately in this 
study. 

We define the correlation coefficients of H~0 and ego, 
respectively, as follows : 

auiaO/ 
(v + ~) Ox i aX i / 

\axk) jv\\ax, j Jl (s) 

where the indices in parentheses do not obey the sum- 
mation convention rule. If the two fluctuating com- 
ponents, i.e. 0 and ap/axg, or audax~ and aO/ax , are 
well correlated, the above coefficients should be of the 
order of one. However, the correlations between those 
components are generally poor, because they are 
associated with different scales. For example, fluc- 
tuations such as u and 0 are tuned to low wave 
numbers, whereas ap/ax~, aujaxj and aO/ax, are the 
spacial derivatives of fluctuating quantities that 
become large at high wave numbers. With these facts, 
the modeling of Hg0 and ego should be especially diffi- 
cult. For example, the correlation between velocity- 
scalar fluctuations at low wave numbers and scalar- 
velocity fluctuations at high wave numbers is hard to 
parameterize. Besides, when Prandtl number is apart 
from unity, the velocity and scalar scales characteristic 
of high wave numbers become much different, because 
viscous and molecular diffusivities affect the velocity 
and scalar fields differently. 

In this study, we assume that dimensionless form 
of Fig0 can be generally related to functions of the 
scalar flux and its production terms as : 

P 

/ 
= f nc./- , 

_ a t ; , .  \ - - d O  _ u iO fff~x ~ } 
- -  Ui U j 7 

dxj 
p__ko_k),~x/(/l,x/(ko/g) . . . .  /. (6) 

Since the above equation simply shows the relation 
between the anisotropy of dimensionless variables, we 
retain only the correlation coefficient of the scalar flux 
in the right-hand side of equation (6) for the first- 
order approximation. The effect of mean velocity 
gradient on fluctuating pressure will be expressed 
implicitly through P/e in the model of ~/~-)  [see equa- 
tion (28)]. If we further assume that the correlation 
coefficient of ego should be also a function of that of 
the scalar flux, we have : 

m 

rlio uiO 
1 ~ 8p 2 = Cnfn,fn2 '..~,r- 'a-z 

(7) 

g, io 

= CoAIZ2 

where 

m 

ufl 
(8) 

0 ~<fn, , fn2 ,~ l  ,f~2 ~< 1. 

Note that the coefficients Cn and C~, should be of O(1) 
and that the functions fro, fro, f~. and f,j and f a  vary 
from unity to zero in order to express the decrease in 
the correlation coefficients of l-Ig0 and ~go. Functions 
fm and f~l stand for the effect of scale difference 
between large and fine motions. On the other hand, 
functions fro andfa  represent the effect of scale differ- 
ence between scalar and velocity fluctuations at high 
wave numbers. Note that each side of these equations 
will not take a value much far from unity, but this 
constraint has not been taken into account in the 
previous models. 

Equations (7) and (8) contain variables such as 
the derivative of fluctuating pressure, which should 
require further modeling. The pressure fluctuation is 
related to the turbulent kinetic energy as 
x / ~  "s) = Cppk. For the pressure derivative tensor 
p.gpj, the following two candidate expressions are 
adopted as a first-order approximation : 

C 2 k2~.. 1 ap 8p 1 1 ap ap 6,, ~ p 2 2  z/ (9) 
p2 axi ax/ 3 p2 axk axk 

1 Op ap 1 ap ap uguj c 2 k  2 u~uj (lO) 
19 2 ax i axj p2 aXk axk 2k P 21 k 

where 2 is the Taylor microscale. With these estimates 
introduced into equation (7), we have two general 
models for the scalar-pressure gradient correlation 
term as : 
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Crt[mfmGx/(Re,) ~u;O (Model 1) 

~Iio = 

[~/--3-CnJm)cn2cI, x/(Ret)kUiO (Model 2). 

(11) 

The coefficient x/(3)/2 is introduced so that  Models  1 
and 2 give exactly the same form in isotropic turbu- 
lence. If we also assume vu,,u;,/~ = u;uj2k in low Rey- 
nolds number flows, where <0 is important ,  equation 
(8) can be rewritten as : 

l+Pr ~ - -  
~:,o = C,f:,.t;2 2x/(pr)x/(R) k u,O. (12) 

These equations do not satisfy some modeling con- 
straints, i.e. vectorial invariance (Model 1), real- 
izability [18] and linear property of scalar equations 
[19]. In the following, each of  the model functions lm 

fm, J~l and f:2 is determined. 
As mentioned earlier, the scalar-pressure gradient 

correlation term FI, 0 can be written as a sum of the 
pressure-scalar gradient correlation term ~b,0 and the 
pressure diffusion term. In most practical flows and 
far from a wall, the pressure diffusion term is relatively 
small, and the following relation should be a good 
approximat ion : 

1~> 100  
pO~_,, = pP Sx; " (13) 

Through the same modeling procedure for Fl;0, a 
model of ~bi0 can also be obtained as : 

C~f~,J;2C;,x/(Ret)~/! Pr) ~ ( ~ t  kU, ~ 
~/(R) \2u.);' 

q~;0 = (Model 1) 

@G); ' ,/(1"0 ~ -- 
lJ~2 Cp.x/(Rts' t)~,~,  Tbli 0 

(Model 2) 

(14) 

where a relationship x / ( ~  ~) = x/(e0/e) is util- 
ized. The difference between equations (11) and (14) 
originates from the choice of the length scales that  
are used for estimating the derivatives of  fluctuation 
quantities, i.e. 2/20 oc ~/(Pr/R) (2o is the Taylor  mic- 
roscale of scalar fluctuations). Therefore, if the spectra 
of turbulent energy and scalar variance do not overlap 
at a high wave-number range (2 ¢ 20), and also if the 
functions fro and f~2 are of order one, equations (11) 
and (14) may give greatly different results. In order 
for the model to satisfy the condit ion of (13), the 
correlation coefficients of II~0 and 4~;0 must decrease 
accordingly. Thus fro and f,2 must satisfy at least the 
following inequalities : 

c+ 4(er)] (15) 
in2 ~< min 1, Cn ~ / (R)J  

I Cn x / (R)] .  (16) 
.I+2 ~ min 1, C+ x/(Pr)J 

The physical meaning of these inequalities is that the 
derivative of a fluctuating quanti ty which appears in 
the correlation should be estimated at least at a scale 
larger than both 2 and 20 (8/~x; <~ 0 (min[l /2,  1/20])). 
In other words, the derivative of a fluctuating quantity 
with the length scale smaller than either of 2 or 2o 
cannot correlate well with other fluctuations such as 
Oorp. 

We now return to the t ransport  equation of u;O. 
If a local equilibrium condit ion holds, the transport  
equation of u;O can be written as : 

0 = P;o + H,0 - ~:;o. (17) 

With the assumptions that u~O ~ ~/(kko), u;u;~ k, 
~U#?,x; ~ elk and (?®/c~x, ~ CR~o/x/(kko), the order 
of magnitude of each term can be estimated as : 

Flio = O(kx/(kko)[x/(Ret)jmJn2] ] (19) 

Lx/(Pr)~/(R) 
In order to restrict lq;0 and e,0 not to exceed Pio, the 
following inequalities must be satisfied : 

x/(ReOfmfn2<~ c ' ( - - ~  + 1) (21) 

The coefficients c' and c" should be of  O(1). The 
functions fn, ,  fro, f:~ and £2 are now chosen so that 
relationships of  (15), (21)  and (22) should hold at 
any state, e.g. Pr--* 0 or oo, and Ret .-.* 0 or oo. As 
mentioned earlier, functionsJh~ a n d £ ,  are chosen so 
as to express the effect of  broadening of the spectra, 
while functionsJn2 and J;2 must bear the effect of  scale 
difference between scalar and velocity fields at high 
wave numbers. Finally, these functions are modeled 
as follows : 

./'n, = 1 - e x p ( -  10r) (23) 

J~t = 1 - e x p ( -  10r) (24) 

1 x/(Pr)]  (25) 
.lh~ = min 1, 1.2 x / (R)J  

f~.2 = m i n [ 6 x / ( P r )  1, x / (R) ]  (26) 
k 4(m'  4(er)J 
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where r = (Ca~R+ 1)/(x/(Ret)fn2 ). The constants in 
equations (23)-(26) are optimized by referring to the 
direct numerical simulation (DNS) and experimental 
results satisfactorily. It must be noted that, since func- 
tionf~l cannot be determined only from the condition 
of (22), it is assumed equal to fro in order to conform 
to a locally isotropic state, i.e. e~0 ~ 0 if r --* 0. 

The parameter x/(Pr/P) that appears in fn2 and f,2 
is the ratio between the Taylor microscales of velocity 
and scalar fluctuations, 2 and 20. It can also be con- 
sidered as the time scale ratio between the velocity 
and scalar fields at high wave-number regions, when 
the same velocity scale is used for conversion from 
length to time scales. On the other hand, the parameter 
r in fm and f~ can be interpreted as the ratio of the 
two characteristic time scales, if rewriting it as : 

r ~  

12 v R 
m a x [ ~ / ( ~ ) ,  k/(~) x / (P r ) ]  

/ (1  + c. 3 
1 ~ koleoJ 

The numerator denotes the choice of the larger 
between the two fine time scales, while the denomi- 
nator the smaller between the two large time scales. 
Thus, the rates of decrease of the correlation 
coefficients are proportional to these time and length 
scale ratios, x/(Pr/R) and r. With equations (23)-(26), 
the proper characteristic time scales are automatically 
selected when the present model is applied to a flow 
which involves time scales. 

As previously noted, the coefficient Cp relates the 
pressure fluctuation to the turbulent kinetic energy k. 
Since we didn't deal so far the so-called slow and rapid 
parts of H~0 separately, C o must represent the effects 
of these processes. For example, the DNS data [20] 
show that C o takes a larger value in the presence of 
mean velocity gradient, while it decreases remarkably 
near a wall since ~/~--z) does not show a strong peak 
as k. In order to account for these features, Cp is 
expressed as a function of P/e and the flatness par- 
ameter A as: 

cp=  A)(08+03 ) 
where A = 1 -- 918(a~iFaoas, ak D, a~j = (uiujk- 2136~s) 
and P = -~u~OU~/Oxj. 

An apriori test of equations (11) and (12) with the 
aid of DNS and experimental data in several fun- 
damental flows is described below. Here, the sum of 
scalar-pressure gradient correlation and dissipation 
terms is compared with : 

Ht0--el0 = - C o ) ~ u , 0  

1-I2~ - e20 = - C(2) ; u2 0 

6.0 
o ; om(li~: 1~2) 

ONS (lido & Kosogi: 199J) 
o Present Model 

• o Bosic MOdel 
4 , 0  a Craft 

v Shih et at Uodet 

z.o i t i 

t = 3 .  0 

0 . 0  
10-2 10-1 Pr 10° t01 

Fig. 1. Dependence of the model constant of IIi0- ei0 on the 
Prandtl number in isotropic turbulence with a constant mean 

scalar gradient. 

H30 - Ca0 = - C(3) ~ u3 0 (31) 

where the model constant C 0 is given by the present 
model as follows : 

(27) 

l + P r  
+0.8f~lf~2 (Model 1) (32) 

2x/(er) x/(R) 

Co) = 0.264 ~--~- fn, fmx/(A)(O.8+o.3P)x/(Ret)  

1 +Pr 
+ 0.8f,,f,2 (Model2). (33) 

2x/ ( Pr) x/ R ) 

The DNS or experimental data are directly substituted 
into the model expression [equations (32) and (33)] 
and compared with the results obtained from the 
definition [IIi0 and e~0, in equations (29)-(31)]. 

First, the model is tested in isotropic turbulence 
with a constant mean scalar gradient (t~®/t~x2 = 
const.). In isotropic turbulence, C o corresponds to 
the model constant of the slow term. Note that both 
Models 1 and 2 take exactly the same form in this 
flow. In Fig. 1, the Prandtl number dependence of C(2) 
is shown. The predictions of Craft [5] and Shih et al. 
[21] are also included for comparison. The DNS data 

(28) [22, 23] reveal that the value of this constant in- 
crease in low Pr and asymptotes to a value around 
1.7 at high Pr. This tendency is well captured by the 
present model. The effect of the turbulent Reynolds 
number is shown in Fig. 2. The value of C(2) increases 
with Ret as indicated by the experimental data of 
Maekawa and Kobayashi [24]. In their experiment, 
the ratio of the grid diameter d to the mesh size M is 
changed in order to produce four different Reynolds 
number flows; e.g. Reit n~t ~ 100 for diM = 0.15 and 
Reit "i' ~ 330 for diM = 0.30. This Reynolds number 

(29) dependence is predicted only by the present model. 
Finally, the effect of time scale ratio is shown in Fig. 
3. The experimental data of Sirivat and Warhaft [25] 

(30) show that C(2) slightly decreases as R increases. Note 
that the closed symbols denote experiments performed 
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4 0  . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  

Pg =O.  71  Symbols: Moekowa & Koboyoshi (1977) 

30 . . . . . . .  

2.0 
- -  P re~n t  Mode, dim 
. . . . .  ~ i c M o d e ,  o 0.15 
. . . . . . . .  CroftModel ~' 0 2 0  

1 . 0  . . . .  $hlheloI .  Mode, 

U=8.2(m/s). dO/dy=41(deg/m) ~ 0.50 

O,C . . . . . . . .  i . . . . . . . . .  I . . . . . . . . .  I . . . . . . . .  

I00 200 300 400 
Ret 

Fig. 2. Dependence of the model constant of 1-1,0- ~, on the 
turbulent Reynolds number in isotropic turbulence with a 

constant mean scalar gradient. 

5.0 
P r  = 0 .  71  u, (,,,Is) ,~/,~u (KI~) 

o 3 ,1  1.81 
4 . 0  Symbols; Siriv~f&Worhoft(1983) Lx 3.4 7.48 

o 3.4 &10  
o & l  2 , 21  

2.0 °~ ........... ~ ~  
- -  ~ resen l  ~ l  

U~(m/sJ~lot~(K/m) . . . . . . .  ~ i c ~ t  
1 . 0  • 8.3 3.88 Croff Model 

• $ .3  I 0 ,$  
• 6.3 4.48 - - - $h ihe t~  Mz~el 

°g.a 0:4 0:5 o'." 0.8 0:9 
R 

Fig. 3. Dependence of the model constant of Flu, ~,0 on the 
time scale ratio in isotropic turbulence with a constant mean 

scalar gradient. 

at a slightly higher Reynolds number than the cases 
denoted by the open symbols. The Reynolds number 
effect is well predicted again by the present model. 

Secondly, the experimental data of  homogeneous 
shear flow [26] is utilized. In this case, C m as well as 
C(:) can be defined. As seen in Fig. 4, the value of  C(:, 
is about 1.7 times larger than that of  C m, and this is 
the major reason why most of  the conventional models 
fail in this flow. Jones and Musonge [15] and also 
Craft  [5] introduced a term which contains the mean 
scalar gradient into the modeled pressure-scalar 
gradient correlation term to overcome this problem. 
The present Model  1 can also express this strongly 
anisotropic feature by introducing the correlation 
coefficient of  the turbulent scalar flux as a variable. 

2.2. Model& 9 Tio and V,o 
The generalized gradient diffusion hypothesis 

( G G D H )  is used to model the turbulent diffusion term 

Tio : 

8 / k - - S u ,  O\ 
T,o = ~Xkxk tCoifl~ ~.UiUk-~X, J (34) 

where, fR is a function of  R which is derived from the 
eddy diffusivity for a local equilibrium flow as : 

2 

10.0 

8.0 

6.0 

4.0 

2.0 

0.0 

' . . . . . . .  ' 1  . . . .  ' . . . .  I . . . . . .  ' " l ' " ' " l " l  ' ' ' ' ' ' ' ' '  

( (7)  i = 1 Pr=O. 71 - -  Present Model t 
.......... O f t e n !  Mode, 2 

Symbols : Tovoulor is & Corrsin 0 9 8 1 )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . .  Basic Mode, 
. . . . . .  Craft Mode, 

. . . .  Shih et ol. Model 

8 9 10 l l  12 
x l/h 

15.0 

10.0 

q~ 

5.0 

. . . . . . .  '1 . . . . . . . . .  I ' , ' ' ' " , ' 1  . . . . .  " ' " l " ' ' ' ' " ' -  
Present I~de l  I - 

( b )  i = 2  Pr=O. 7T . . . .  ,~'¢sent Model 2 

Symbols : I'evooloris & Corrsin (1981) . . . . . . . .  8¢t8'c Mode, 
. . . . . . . .  Croft Mode, 
. . . .  Shih et el. Mode," 

i A A A A A I~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 , 0  . . . . . . . .  I . . . . . .  z , , I , , , a t , J , , I  . . . . . . . . .  I t t , , , , , ,  

8 9 1 0  l l  1 2  

Fig. 4. Dependence of the model constant H~0-~,, on the 
mean shear rate in homogeneous shear flow with constant 

mean scalar gradients. 

This function takes the smaller of  k/a and ko/~o as the 
characteristic time scale that appears in To. 

The molecular diffusion term Via also needs to be 
modeled. In the present study, the following simple 
model is adopted : 

(5" u , O  ( v + ~ )  "~ 
Vii, - - -  (36) 

2 8x 2 

2.3. Modelin# ko and eo equations 
In order to calculate the scalar invariance and scalar 

time scale, the equations of  ko and ~0 must be solved. 
The t r anspor t  equation of  the scalar variance 
ko = 02/2 can be written as : 

Dkl, 8: k0 ~ - -  8® 
D t  - ~ ax~ ax, u ' - ~  -u 'O~x,  

I , 7)~ I'~, 

80 80 
(37) 

8xi 8x, " 

~o 

The turbulent diffusion term T~) and the dissipation 
term ~0 are the unknown terms in equation (37). For  
To, a G G D H  model is adopted : 

k ako~ 
?~ C02JR -- UjU,. - - ,  (38) To = ax~ ~ aXff" 

The dissipation term e0 is given from the following 
modeled equation : 
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Table 1. Model constants 

Cn C, CR Co,, Co2, Co3 Co~ Cpz Coi Co2 

-0.264 0.8 0.7 0.3 0.8 0.3 1.0 0.3 

Deo 82 eo Po 
= c~S- ~- + T,o + C w  - -  Dt  Ox; ko eo 

P 
+ C p 2  k / ; 0  - C ° l  ko~°  eo - CD2 ~eo. (39) 

The turbulent diffusion term T~o is modeled in the 
same manner as T;o and To: 

O f k - - O e o \  
T~o : 8 ~ i C o 3 f ,  ~usu, ~xs). (40) 

The values of the model constants in the turbulent 
diffusion terms (34), (38) and (40) are set as 
Co~ = Co2 = Co3 = 0.3, since these values give good 
results in channel flows. The model constants in equa- 
tion (39) are optimized so that it gives good results in 
isotropic turbulence, homogeneous shear and channel 
flows. The values of the model constants are sum- 
marized in Table 1. 

3 .  M O D E L  T E S T I N G  I N  B A S I C  F L O W S  

The model described in the previous section is tested 
in several fundamental flows.~" The velocity field vari- 
ables (i.e. U, u;uj and ~) are supplied from the DNS 
and experimental data, and the differential equations 
only for ®, u~, ko and e0 are solved, so that any 
failure in the results can be attributed to the scalar 
field modeling. 

3.1. Homogeneous shear f low 
The DNS of Rogers et al. [27] are utilized. In their 

simulation, the constant mean scalar gradient is 
imposed in three orthogonal directions ; cases 1, 2 and 
3 correspond the mean scalar gradient in the x~, x2 
and x3 directions, respectively. Most turbulence mod- 
els have been tested and qualified against the case in 
which the mean scalar gradient is aligned with the 
mean velocity gradient. Hence, it is important to study 
how those models perform in the case when the scalar 
gradient exists in other directions. The model pre- 
dictions for the three cases are shown in Fig. 5. The 
present model and the Basic model give fairly good 
results in all cases, while other recent complex models 
achieve poorly, especially in case 1. This implies that 
the additional terms in the complex models do possess 
a possibility of giving erroneous results in the case 

t The results in the flows which were already utilized in 
the a priori test in Section 2 (see Figs 1-4) will not be shown 
here. However, it is confirmed that the present model gives 
good results in those flows. 

5 . 0  , , , , , , , , , [ , , , , , , , , , 

CI2BU Case l(aO/axl=2.5) 
Pr=O. 7 

S y r t ~  : ON$ (l~s et #.. 1986) 
- -  P r ~ n t l l ,  o ~ l  l 

......... P r . . . t , ~  2 

...... ' . . . .  T. -....:.. 
I~ 0.0 ~ ~ ~ " ~ ; ~ "  

" ~ : ~ ; z  ....... 

. . . . . . . .  " = " ~ " ~ '  ' , ' , , ' , ~  , - ' ; i  
- -  - Shih et oL Model , . ,  

- 5 . 0  . . . . .  ' ' ' ' I . . . . .  " : ,  , , 
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3.0 . . . . . . . . .  , . . . . . . . . .  

C128U Case 2(a@/axz=2.5) 
Pr=o. 7 ( b )  

Syrrd)ols : 0 1 ~  (Rogers et o1., 1986) / 

Present Model f ~ 

. . . . . . . . .  Pr~,~,2 .=~...:~ ~ 

~ . . - - ~ : -  ........ 

0.0 

............ Croftkk~del . "-. 
. . . . . .  den~  & ~ l t l b~ l  ~ ., 

- - - Shlh et ol. Model x 

- - ~ . 0  , , , , , J i i ~ I , , i , , , , , , 

0 I0  S.t 2 0  

2.0 . . . . . . . . .  I . . . . . . . . .  

C128U Case 3(aS/axj=2.5) 
Pr=O. 7 (c ) 

St, mbols : DNS (Roeers et o1., 1986) 
- -  Present Mod~ 1 

. . . . . .  Present Model 2 

0.0 

. . . . . .  Bosi c Model " " ' .  " "  

............ Croft  MOdel " ,  • , .  

. . . . . .  Jones & Musonfe llodel 

- - - S b i h  ef oi. Model 

- 3 ( ]  . . . . . . . . .  I , , , , . . . . .  

0 10 S.t 20 

Fig. 5. Time development of turbulent scalar flux in homo- 
geneous shear flow. (a) Case l (~®/~xl = const.), (b) Case 2 

(O0/~x2 = const.), (c) Case 3 (~O/~x3 = const.). 

where they have not been tested, while simpler models 
seem not to fail seriously. 

3.2. Fully developed channel f low 
The model proposed should be modified for its 

application to the near-wall sublayer. To do this, a 
difficulty exists in the prediction of scalar transfer in 
high Prandtl number fluids as described in the follow- 
ing. 

In the present study, the scalar fluctuation is 
assumed to be zero at the wall. This assumption is 
generally valid in an air flow (see Kasagi et al. [28]). 
Then the wall limiting value of R is equal to Pr : 

R = P r  at y = 0  (41) 



2984 N. SHIKAZONO and N. KASAGI 

where y is the distance from the wall. Also, 20 becomes 
of the same order as 2. The local Reynolds number is 
effectively small (r >> 1) in this region, and hence all 
the damping functions can be estimated as 
fm ~fn2  ~f~l ~f~.2 ~ 1. If we now assume that the 
gradients of mean scalar quantities should scale with 
2o or 2 (i.e. c~/cnx~ ~ 1/20 ~ 1/2), the order of mag- 
nitude of the model terms such as equations (11), 
(12), (34) and (36) can be estimated as follows : 

T~o = O ( k  x/(kko)x/(Re~) ) (42) 

c 1 

II~o = 0 ~x/(kko)x/(Ret) (44) 

e~o = 0 (kko) +1 . (45) 

However, in the vicinity of the wall (e.g. y~ ~< 10), 
the order of magnitude of the scalar flux production 
term P~o cannot be estimated as in equation (18) when 
Pr >> 1. The estimation c~U~/Oxi ~ Csx/(e/v) should be 
used instead of 0 U~/c~x~ ~ s/k since the viscous dis- 
sipation of mean kinetic energy v(OUjcL'9) a is of the 
same order as s. Then the order of magnitude of P,~ 
can be written as : 

e CR 

If the scalar flux equation is assumed to be at a local 
equilibrium state, Vio and ~0 cannot exceed Pro. In 
order to satisfy this condition, functions f:w and Jw 
are introduced into the models of Vio and e~0. 

v,o (" + a t a.,o  
- eta, rvw A (47) 

t + P r  s - -  

~,o = CJ;J;zj;w 2x/(pr)x/(R) k uiO. (48) 

In the present study, f:w and f w  are given in a simple 
form as : 

] ,49, 
where the constant  Cs is given a value of 0.1. Note 
that this modification only works for high Prandtl  
number  flows, and it is not  necessary for other cases 
(e.g., Pr < O(101)). 

It is also important  to satisfy the wall limiting 
behavior [29]. The terms that balance at the lowest 
order of y at the wall are Vio, IIi0 and si0, and each of 
them requires some additional modification. In this 
study, the models proposed in the previous section 
are bridged with the expressions that satisfy the wall 
limiting behavior : 

( v - c  0 au;O) . 
+nin ,  6 ~xk ~ j :  

Fl,cj = -- ~ uk Onk nJ~ 

(50) 

~ \2u~o) 

= ~ l + P r e - -  
eio ~ 2Pr ~uiO 

l + P r  e - -  } 
+ - ~ r r  ~UkOnink f~ 

{ l + P r  e - - } ( 1  (52) 
+ C,f:,f.2 2x/(pr)x/(R) [cu~O --fw) 

where n~ is the wall normal unit  vector and J~ is a 
function that changes from unity to zero as it moves 
away from the wall. Note that only Model 1 of 1-I~0 is 
used here since it can reproduce large anisotropy of 
scalar fluxes without any ad hoc wall reflection model- 
ing. Although its form violates vectorial invariance, 
Model 1 shows great improvement in strongly sheared 
turbulence where the turbulence anisotropy is very 
large, if a coordinate axis is set parallel to the mean 
flow direction. Its simplicity is so attractive that it is 
adopted as the Ili0 model for wall flows in this study. 
The functionfw is chosen as follows : 

./~ = e x p [ -  Cw, x/(A)] (53) 

where (2~1 = max[4, 0.6Pr3/4]. 
Referring to Kawamura  and Hada [30], the 

go ( = eo - 2c~ (max [Ox/(ko)/Oy, 0]) z ) equation is solved 
instead of t0 equation for the sake of numerical stab- 
ility : 

Dgo c3280 O ( k C3go \ Po 
= 0 ~ . . 2  -IF ~ C 0 3 f R  - -  - -  _ _  ~ Dt c~xi ~xk c. UjUk c~Xj)+Cm ko to 

+ Cp2 f go-CDl go ~ C m g  gogo ko s O - ~ eo + E -- -~o (541 

where g = e -  2v~_O~/(k)/@) 2, go = 2~(O~/(ko)/~Y) 2, 
E = 2~Cw2(ko/%)vz(020/@2)2 and Cw2 = max [0.1, 
0 3 5 - 0 . 2 1 P r ] t .  

Then the model is applied to fully developed tur- 
bulent channel flows. The DNS data of Kasagi et aL 
[32], Kasagi and Ohtsubo [33] and Kim and Moin 

"~ The authors apologize for typos in the definitions of E 
and Cw2 in the previous paper presented at the 9th Sym- 
posium of Turbulent Shear Flows [31]. 
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10 0 1 0  t y +  1 0  ~ 

Fig. 6. Mean scalar profiles in fully developed turbulent 
channel flow. 

2O ~. 0.1 

to 
0.0 

[34] are used. The mean scalar profiles at Pr = 0.025 
and 0.71 are shown in Fig. 6. It can be said that the 
mean scalar profiles are well predicted in both cases. 
In Fig. 7, comparison is made with the DNS data at 
three different Prandtl numbers, i.e. Pr = 0.025, 0.71 
and 2.0. The ratio of the two components of the scalar 
flux -ulO/u20 changes drastically with increasing the 
Prandtl number; it becomes greater than 10 near the 
wall at Pr = 2.0. The present model captures even 
quantitatively well this strongly anisotropic feature of 
the scalar field. It is surprising that these results have 
been obtained with a simple Ilio model in which no 
wall reflection effect is taken into account. The pre- 
dicted budget profiles of ~ are compared with the 
DNS data in Fig. 8. In the budget of Pr = 0.025, 
the scalar-pressure gradient correlation term does not 
make any appreciable contribution and the dis- 
sipation balances with the production. For Pr = 0.71, 
however, the scalar-pressure gradient correlation 
term almost balances with the production term. This 
tendency is successfully predicted by the present 
model. 

Finally, the Nusselt number Nu is plotted against a 
wide range of Prandtl number (2.5 x 10 -2 < Pr < 
10 +) for Re, = 150 in Fig. 9. The empirical function 
of Sleicher and Rouse [35] for pipe flows is also plot- 
ted for comparison. It is known that the Nusselt num- 
ber is nearly proportional to Pr ]/3 at high Prandtl 
numbers, and this Prandtl number dependence is well 
predicted. 

4. CONCLUSIONS 

A second-moment closure is proposed for pre- 
dicting turbulent scalar transport in various Prandtl 
number fluids. The correlation coefficients of the sca- 
lar-pressure gradient correlation and also of the dis- 
sipation terms are defined in the turbulent scalar flux 
equation. It is argued that these coefficients must 
decrease when the fluctuations arise at different scales 
and that the rate of decrease is to be proportional to 
the ratios between time scales and Taylor microscales 
involved. As a result, the present model coefficients 
are expressed as functions of the turbulent Reynolds 

-0.1 
- l . 0  

- ' ' ' ' ' ' ' ' ' I ' ' ' ' ' ' , , , . 

: (o)  Pr=O. 025  i=1 i=2 
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' ' ' ' ' ' ' ' ' I ' ' ' ' ' ' , , , 

(b)  Pr=O. 71 i=l i=2 
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.... & Kuroda, 1992)i ~ 

i i I , , i i i i I i i i i + i , , 1 
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-1.0 0.0 y/~ t.O 

Fig. 7. Turbulent scalar flux profile in fully developed tur- 
bulent channel flow. (a) Pr=0.025, (b) Pr= 0.71, (c) 

Pr = 2.0. 

number Ret, the Prandtl number Pr and the time scale 
ratio R. 

The present model predicts well the turbulent scalar 
fluxes in isotropic turbulence with a constant mean 
scalar gradient, where the model constants show large 
variations over wide Pr and Ret ranges. The scalar- 
pressure gradient model, especially Model 1 given by 
equation (11), predicts well the large anisotropy of 
turbulent scalar flux in wall turbulence. Although 
Model 1 does not assume vectorial invariance, it 
shows great improvement in simple shear flows pro- 
vided that one of the coordinate axis is defined in 
alignment with the main flow direction. Model 1 must 
be used with care in this respect. 
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